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Abstract
Despite recent progress in the field of video matting, neither public data sets nor even

a generally accepted method of measuring quality has yet emerged. In this paper we
present an online benchmark for video-matting methods. Using chroma keying and a
reflection-aware stop-motion capturing procedure, we prepared 12 test sequences. Then,
using subjective data, we performed extensive comparative analysis of different quality
metrics. The goal of our benchmark is to enable better understanding of current progress
in the field of video matting and to aid in developing new methods.

1 Introduction
Formally, matting is an inverse alpha-compositing problem: i.e., given pixel I, we want to
find transparency value α ∈ [0;1], foreground pixel F , and background pixel B so that

I = αF +(1−α)B. (1)

The problem is ill posed yet solvable by considering the affinity of pixels in natural images.
Matting of natural images is well studied [5, 7, 8, 9, 10, 12, 13, 17, 18, 23, 24, 26], and
according to [15], natural-image matting algorithms are continuously improving.

Video matting is a relatively new research direction that arose recently as available
processing power increased. Applied to video, matting has two special requirements: tolerance
of sparse user input and temporal coherence of the resulting transparency values. Developers
of new methods achieve both requirements either explicitly by subjecting transparency values
to temporal-smoothness constraints or implicitly by propagating the inner parameters required
to solve for alpha.

Despite the rising interest, research in the field of video matting is still weakly organized.
In fact, many developers estimate the quality of their methods by visual comparison [2, 6, 21].
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Figure 1: Preview frames of our test sequences.

The two main challenges facing an effective comparison are preparation of the data
set and choice of a quality metric. In this paper we address both challenges and describe a
benchmark, available at videomatting.com, that provides a comparison, two training sequences
with ground-truth transparency, and multiple visualizations for convenient analysis of the
comparison results.

To prepare the data set, we imposed four requirements on our test sequences: high quality
for the ground-truth transparency, natural appearance, complexity, and diversity. To satisfy the
first two requirements, we used two different techniques of foreground-object capture: namely,
capture in front of a green screen and sequential photography against different backgrounds.
We composed the extracted objects over a set of challenging backgrounds (see Figure 1) and
prepared several trimap-width gradations.

Having obtained our test sequences, we conducted extensive subjective comparison of
12 matting methods. Using the collected data, we then compared different quality metrics.
The results showed that alpha temporal coherence is significantly more important to human
perception of video-matting quality than accuracy and that despite the imperfection of optical-
flow techniques, use of these techniques can improve estimation of matte temporal consistency.
The importance of temporal consistency, however, declines with increasing motion speed.

2 Related work
Although in this paper we introduce the very first benchmark for video matting, developers
of new methods have long conducted simple comparisons to prove the superiority of their
approaches. For instance, Lee et al. [11] proposed generalizations of robust matting [23]
(both sampling and smoothing parts) to video sequences. They compared the performance
of their method against frame-by-frame robust matting by computing the mean square error
(MSE) of a single rendered sequence. Additionally, they measured temporal coherence as the
ratio of temporal derivatives (RoTD) for the estimated alpha and the initial sequence.

Tang et al. [22] proposed generalization of closed-form matting [13] and compared their
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stop motion examplestop motion example green screen examplegreen screen example

Figure 2: Alpha mattes from chroma keying and stop-motion capture for the same image
region. The stop-motion result is significantly better at preserving details.

method against a frame-by-frame version and several video-segmentation methods—e.g.,[1].
They used a set of blue-screen videos, and to estimate performance they used the mean
absolute error (MAE) and its first derivative.

Brosch et al. [4] applied the recently proposed cost-volume filtering [16] to video matting
and compared their method against a per-frame prototype using non-reference RoTD.

Li et al. [14] created 3D KNN matting [5] and compared it against a multiframe nonlocal
matting Laplacian [6] using RoTD.

One of the most comprehensive comparisons appears in the work of Schahrian et al. [19].
The authors extended their previously proposed method of weighted color and texture mat-
ting [17] to the case of video and compared it with [1, 2] using the MSE between alpha values
and the MSE between their temporal derivatives on a set of five green-screen videos.

In summary, most researchers perform only basic comparisons against a few competi-
tors. Often, for the sake of simplicity, they sacrifice estimation of per-frame accuracy and
measure only temporal stability using the non-reference RoTD metric [4, 14]. In some cases,
researchers only employ a visual comparison [2, 6, 21]. There are thus several approaches to
estimating the quality of different methods but so far no way to compare the performance of
these approaches.

3 Data set
The crucial part of our proposed benchmark is a set of test sequences and corresponding
ground-truth transparencies. The data set consists of five moving objects captured in front
of a green plate and seven captured using the stop-motion procedure described below. We
composed the objects over a set of background videos with various levels of 3D camera
motion, color balance, and noise. We published ground-truth data for two stop-motion
sequences and hid the rest to ensure fairness for the online benchmark that we introduce
in Section 4.4.

Using thresholding and morphological operations on ground-truth alpha mattes, we
generated trimaps, i.e. maps indicating if pixel certainly belongs to foreground, background or
its transparency value needs to be solved. By varying width of unknown region we generated
three trimap-width gradations: narrow, medium, and wide.

3.1 Chroma keying
Chroma keying is a common practice in the film industry: the cinematographer captures an
actor in front of a green or blue screen, then the VFX expert replaces the background using
special software.
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Figure 3: The problem of screen reflection and a proposed solution. a) Plush toy reflects
color screen near the edges. b) Different checkerboard screens share the same white reflec-
tion. c) Alpha mattes computed using shots against solid color and checkerboard screens.
d) Example of reflection problems in ground-truth image from alphamatting.com.

For our research we used five green-screen video sequences with a significant amount
of semitransparency—e.g., hair, motion blur, and smoke—provided by Hollywood camera
work [27]. We extracted alpha mattes and corresponding foregrounds using The Foundry
Keylight [25]. To improve quality for nonuniformly shaded green screens, we used mul-
tiple nonoverlapping instances of Keylight and adjusted each instance to deliver the best
performance in its local region.

Chroma keying enabled us to obtain alpha mattes of natural-looking objects with arbitrary
motion. Nevertheless, this technique cannot guarantee that the alpha maps are natural, because
it assumes the screen color is absent from the foreground object (see Figure 2). To get alpha
maps that have a very natural appearance, we used the stop-motion method.

3.2 Stop-motion

We designed the following procedure to perform stop-motion capture: an object with a fuzzy
edge sits on the platform in front of an LCD monitor. The object rotates in small, discrete
steps along a predefined 3D trajectory, controlled by two servomotors connected to a computer.
After each step, the digital camera in front of the setup captures the motionless object against
a set of background images. At the end of the process, we remove the object, and the camera
again captures all of the background images.

Following [15], we can solve for transparency values in a system of alpha-compositing
equations (see Equation 1). Instead, however, we use an extended system to allow for lighting
variations caused by background-image changes (see Figure 3a):

I1 = αF +(1−α)B1 +h∗B1

· · ·
In = αF +(1−α)Bn +h∗Bn,

(2)
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where I1, I2, . . . , In are images of the object over different backgrounds B1,B2, . . . ,Bn; ∗ denotes
convolution; h is a set of linear filters collecting light rays from the screen according to the
object’s reflectance and Lambert’s cosine law; and α and αF are, respectively, the unknown
transparency map and the object composite over a solid black background. By using the
extended system, we avoid false transparency in a reflecting object’s area (see Figures 3c
and 3d).

Because of the reflectance term, System of equations 2 is underdetermined, yet we are
free to change the feasible solutions by choosing B. For instance, solid-color backgrounds
satisfy h∗Bi = (h∗1)Bi and give us an unambiguous αF value. There are probably no such
background images that uniquely determine α , so we need to make an additional assumption
about h. We can use black-and-white checkerboard images C1 and C2 = 1−C1 with small
cells; in addition, considering that h is a low-pass filter and assuming that h ∗C1 ≈ h ∗C2
(see Figure 3b), we derive an explicit expression for the transparency values:

α ≈ 1− (I1− I2,C1−C2)

‖C1−C2‖2 . (3)

Equation 3 enables us to compute α everywhere except for small bands around pattern
edges where the difference‖C1−C2‖ is small because of the optical blur. To eliminate this
uncertainty we shift the pattern in horizontal, vertical, and diagonal directions and capture the
object against the shifted patterns and their inversions. Thus, for each pixel we have at least
one system with a significantly nonzero value of ‖C1−C2‖.

4 Objective comparison

4.1 Perceptual data
After obtaining the data set, the next important part of the benchmark process is quality
measurement. For video matting, the general approach is to combine estimates of overall
method accuracy, typically measured using mean square error (MSE) and temporal-coherence
error [11, 19, 22]. MSE is still the best known measure o f overall accuracy, yet it provides only
30 % to 50 % correlation with human perception [15]. Measurement of temporal consistency
is even less well studied, and approaches vary among authors.

To support our choice of quality metric, we collected subjective pairwise comparisons
of 12 matting methods applied to the videos from our data set. In particular, we showed
participants a sequence of video pairs; for each pair, we asked them to choose the video with
better quality or to indicate that the videos are approximately equal. For the sake of contrast,
we composed the results of the methods over blue and yellow checkerboard images, and since
many pairs differ only during brief intervals, we divided long sequences into shorter segments
of 50 to 60 frames. Among our viewers were 101 volunteers and 442 paid participants from
Amazon Mechanical Turk. We offered paid participants $0.05 for 23 pairs, 3 of which were
hidden quality-control comparisons between ground truth and a low-quality method; to accept
the data from a given individual, we required correct choices for all control comparisons (we
consider only one session per participant). In total, we collected 12,629 comparisons (3,789
from volunteers and 8,840 from paid participants), equally distributed among methods and
sequences. All collected data is available at videomatting.com/subj .

Using the Bradley-Terry model [3], we transformed the data into subjective scores (see Fig-
ure 4a). As expected, the best score pertains to the Adobe After Effects Refine Edge tool [26].

Citation
Citation
{Lee, Yoon, and Lee} 2010

Citation
Citation
{Shahrian, Price, Cohen, and Rajan} 2014

Citation
Citation
{Tang, Miao, Wan, and Zhang} 2012

Citation
Citation
{Rhemann, Rother, Wang, Gelautz, Kohli, and Rott} 2009

Citation
Citation
{Bradley and Terry} 1952

Citation
Citation
{zzb} 

http://videomatting.com/subj


6 EROFEEV et al.: PERCEPTUALLY MOTIVATED BENCHMARK FOR VIDEO MATTING

Quality
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(a) Subjective ranks of 12 matting methods
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(b) Test sequences’ ranking by their potential to
distinguish between weak and strong methods

Figure 4: Results of pairwise subjective comparison of matting methods.

More interestingly, the matting Laplacian first proposed in 2006 [13] remains one of the best
methods, probably because of its stability with respect to changes in the input image. Another
reason may be that many researchers have overfit their methods to the images in [15].

In addition, the collected data helps us to estimate the quality of our test sequences. Since
different test sequences have different potential to distinguish weak and strong methods,
researchers may prefer to check their new methods against sequences that are better able
to discriminate among them. Specifically, we define the discriminating ability of a given
sequence as the average of all inter-comparisons among the five best and five worst methods
taken from all the data (we assign a value of +1 for selection of the first method, −1 for
selection of the second method, and 0 indicating that the methods were deemed approximately
equal). Figure 4b shows the discriminating capabilities for all of our test sequences. Pre-
dictably, sequences captured in front of a green screen are more difficult and thus are better
for discriminating among methods.

4.2 Quality metric

Even given ground-truth data, there is no generally accepted way of estimating video-matting
quality. To support our choice of quality metric, we compared 12 different candidates by their
correlation with subjective data. Roughly, our candidates fall into three subsets defined by
similar behavior: two metrics for matte accuracy, eight metrics for matte temporal coherence,
and two motion-aware metrics for temporal coherence.

Accuracy metrics process frames independently and thus do not take into account any
interframe impairments. In this study, we avoid considering complex metrics based on
modeling of the natural-image alpha matte; our accuracy metrics independently process
each pixel and therefore capture only mean per-frame difference between the evaluated and
ground-truth sequences.
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Figure 5: Comparison of objective quality metrics according to correlation of their values
with perceptual data.
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Figure 6: Influence of average motion speed on performance of spatial, temporal, and temporal
motion-aware metrics.
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(a) Comparison results for matting methods ap-
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(b) Mean method ranks for all test sequences

Figure 7: Objective comparison results.

Let # denote the number of frames. Also, for pixel p of frame t, let αp,t denote the
transparency value of the video matting under consideration and let αGT

p,t denote the ground
truth. Then,

SAD =
1
# ∑

t,p

∣∣αp,t −α
GT
p,t
∣∣ , (4) SSD =

1
# ∑

t

√
∑
p

(
αp,t −αGT

p,t
)2. (5)

Temporal-coherence metrics capture unexpected alpha temporal changes and ignore
temporally coherent errors. Similarly to the case of accuracy metrics, we make no assumptions
about frame structure. Computation of two metrics, however, includes estimation of optical
flow and thus inherits the assumptions of optical flow. We included these metrics in our
comparison despite their dependency on an imperfect optical-flow implementation, since
even in the case of false motion vectors we expect their performance to be similar to that of
motion-unware metrics (every motion-unaware metric can be interpreted as a motion-aware
metric based on a constant zero-valued field of motion vectors). In the case of vectors that
closely represent the true motion, the performance of these metric should be much higher.

For all experiments in this section, we use a block-based motion-estimation algorithm [20]
computed for a ground-truth sequence composed over solid-green background. Note that as a
result, motion-aware metrics avoid giving an unfair advantage to matting methods based on a
similar motion-estimation approach, since these methods lack a ground-truth sequence.
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Using the same notation for #, p, t, αp,t , and αGT
p,t and denoting motion vectors by vp, we

define

SSDdt =
1
# ∑

t

∣∣∣∣∣d∑p
(
αp,t −αGT

p,t
)2

dt

∣∣∣∣∣ , (6) dtSSD = SSD

(
dαp,t

dt
,
dαGT

p,t

dt

)
, (7)

SSDdt2 =
1
# ∑

t

∣∣∣∣∣d2
∑p
(
αp,t −αGT

p,t
)2

dt2

∣∣∣∣∣ , (8) dt2SSD = SSD

(
d2αp,t

dt2 ,
d2αGT

p,t

dt2

)
, (9)

SSDvar = vart

(
∑
p

(
αp,t −α

GT
p,t
)2
)

, (10) AdtIdt =
1
# ∑

t,p

∣∣∣ dαp,t
dt

∣∣∣/(1+
∣∣∣ dIp,t

dt

∣∣∣) , (11)

MESSDdt =
1
# ∑

t,p

∣∣∣(αp,t −α
GT
p,t )

2− (αp+vp,t+1−α
GT
p+vp,t+1)

2
∣∣∣ , (12)

MEdtSSD =
1
# ∑

t,p
(
∣∣αx,t −αp+vp,t+1

∣∣− ∣∣∣αGT
p,t −α

GT
p+vp,t+1

∣∣∣)2. (13)

Authors of [4, 11, 14] used non-reference metric AdtIdt for temporal coherence evaluation.
Shahrian et al. used dtSSD. Tang et al. used metric similar to SSDdt. Finally, SSDdt2,
dtSSD, dt2SSD and SSDvar are slight variations of above mentioned metrics. Motion-aware
metrics MESSDdt and MEdtSSD are straightforward generalizations of SSDdt and dtSSD
respectively with use of optical flow.

For each metric, we estimate scores for the set of 12 video-matting methods applied to
10 test sequences. Then, for the logarithm of each score we compute the Pearson correlation
coefficient with the subjective data. Figure 5 shows the mean correlation values. The results of
our comparison revealed greater perceptual importance of temporal coherence than accuracy.
As expected, taking motion into account increases mean correlation even more. But the
relative inferiority of accuracy metrics emerges mostly for slow-motion sequences; it becomes
almost insignificant as motion speed increases. One possible explanation is that the human
visual system pays less attention to temporal inconsistencies. Figure 6 shows the exact
dependency.

4.3 Evaluation results

Since we believe both accuracy and temporal coherence are important indicators of video-
matting quality, we independently compared matting methods using SSD and MESSDdt. At
the time of publication, our benchmark offers comparison of 12 matting methods over 10 test
sequences. We show results of the comparison for the “City” test sequence in Figure 7a and
show average method ranks for all of our test sequences in Figure 7b.

Additionally, Figure 8 shows MESSDdt values for various gradations of trimap’s un-
known area width. The figure clearly demonstrates that methods based on color sam-
pling [7, 8, 23] are less robust with respect to increasing trimap width than alpha-propagation
methods [10, 13, 24] are.

Currently, all methods in our comparison require a per-frame trimap, but we encourage
researchers to submit methods that require a trimap only for the first and last frames, since
support for sparse user input is very important to video matting.
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Figure 8: Performance of methods for various widths of trimap’s unknown area on “Artem”
sequence.

4.4 Website

To simplify access to the benchmark and enable addition of new methods, we created the
videomatting.com website, which contains scatterplots and rating tables for different quality
metrics. In addition, results for participating methods are available for viewing on a player
equipped with a movable zoom region. Besides the comparison, the website includes in-
structions for new participants, links to test videos, and two sequences with ground-truth
transparency.

5 Conclusion

In this paper we presented an online benchmark, available at videomatting.com, that allows
researchers to evaluate their video-matting methods. We designed a procedure for obtaining
high-quality ground-truth transparencies and performed extensive analysis of a possible
quality metric based on subjective data from human perception.

The reported study was funded by RFBR according to the research project 15-01-08632 A.
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